

MA5721 Datasheet 2.4MHz 1A Step-Down Converter with I2C Interface

Version: Release date:

2023-07-11

0.8

Use of this document and any information contained therein is subject to the terms and conditions set forth in Exhibit 1. This document is subject to change without notice.

Version History

Version	Date	Description
		Absolute Maximum Ratings on P11
0.8		Recommended Operating Conditions on P11
		Thermal Information on P12
	2023-07-11	Add note in chapter 4.2 on P12
		Add note in chapter 4.3 on P12
		Add note in chapter 4.4 on P13
		Add note in Table 4-2 on P14

Table of Contents

	istory ·····	
	ontents	
-	ures	
	les ·····	
	view ·····	
	General Description	
	Features	
	Applications	
	Ordering Information	
	Marking Information	
	Pin Configuration	
	tional Descriptions	
•	ration	
	PWM Frequency and Adaptive On-Time Control	
	Auto-Zero Current Detector ······	
	Under-Voltage Protection (UVLO) ······	
	Power Good Indication Pin	-
	Over-Current Protection (OCP)·····	
	Soft-Start ·····	
	Over-Temperature Protection (OTP)	
	Over-Voltage Behavior (OV) ······	
	rical Characteristics ······	
	Absolute Maximum Ratings ·····	
	ESD Ratings	
	Recommended Operating Conditions	
	Thermal Information	
	Electrical Characteristics	
	cal Operating Characteristics	
	Typical Operating Characteristics	
••	ication Information	
	Inductor Selection	
	Input and Output Capacitor Selection	
	I ² C Interface Function	
	Vout Selection ·····	
	Enable and Soft-Start ·····	
	Discharge Function	
	Slew Rate Setting	
	Forced PWM Mode	
	Typical Application Circuit	
	Thermal Considerations	
	Layout Considerations	
	721 Packaging ·····	
7.1	Outline Dimension ·····	33

7.2 F	Footprint Information ······	4
Exhibit 1 Te	erms and Conditions	5

List of Figures

Figure 1-1. WL-CSP-11B 1.31x 1.62 (BSC)	7
Figure 2-1. Functional Block Diagram	8
Figure 3-1. The Logic of PG	10
Figure 6-1. I ² C Read and Write Stream and Timing Diagram	22
Figure 6-2. Data Transfer Format in Hs-mode ······	23
Figure 6-3. A Complete Hs-mode Transfer ······	23
Figure 6-4. Typical application circuit	30
Figure 6-5. Derating Curve of Maximum Power Dissipation	31
Figure 6-6. PCB Layout Guide	32
Figure 7-1. 11B WL-CSP 1.31x1.62 Package (BSC)	33
Figure 7-2. Footprint information ······	34

List of Tables

Table 1-1. Ordering options	6
Table 1-2. Functional Pin Description	7
Table 3-1. PG Pin Status	10
Table 3-1. PG Pin Status Table 4-1. Thermal Information	13
Table 4-2. General electrical specification	
Table 4-3. I ² C Interface (The I ² C interface will not work until the RESET# goes high)	15
Table 6-1. I ² C Register Map	24
Table 6-2. NSELO.	24
Table 6-3. NSEL1 ····· Table 6-4. DISCHG ·····	25
Table 6-4. DISCHG	26
Table 6-5. ID1 ·····	26
Table 6-6. ID2 ·····	27
Table 6-6. ID2 Table 6-7. MONITOR	27
Table 6-8. CONTROL2 ·····	28
Table 6-9. CONTROL4 ·····	28
Table 6-10. Recommended External Components for 1A Maximum Load Current	30

1 **Overview**

1.1 **General Description**

The MA5721 is a step-down switching voltage regulator that delivers a digitally programmable output from an input voltage supply of 2.5V to 5.5V. The output voltage is programmed through an I2C interface capable of operating up to 3.4MHz.

Using a proprietary architecture with synchronous rectification, the MA5721 is capable of delivering 1A continuously at over 80% efficiency, maintaining that efficiency at load currents as low as 10mA. The regulator operates at a nominal fixed frequency of 2.4MHz, which reduces the value of the external components. Additional output capacitance can be added to improve regulation during load transients without affecting stability.

At moderate and light loads, Pulse Frequency Modulation (PFM) is used to operate in Power-Save Mode with a typical quiescent current of 45µA at room temperature. Even with such a low quiescent current, the part exhibits excellent transient response during large load swings. At higher loads, the system automatically switches to fixed- frequency control, operating at 2.4MHz. In the Shutdown Mode, the supply current drops below 1µA, reducing power consumption. The PFM Mode can be disabled if fixed frequency is desired. The MA5721 is available in a small WL-CSP-11B 1.31x1.62 (BSC).

1.2 **Features**

- Steady 2.4MHz Switching Frequency
- Continuous Output Current Capability : 1A
- 2.5V to 5.5V Input Voltage Range
- Digitally Programmable Output Voltage
 - 0.3V to 1.3V Programmable Slew Rate for Voltage Transitions
- I²C-Compatible Interface Up to 3.4MHz
- PFM Mode for High Efficiency in Light Load
- Quiescent Current in PFM Mode : 45µA (Typical)
- Input Under-Voltage Lockout (UVLO)
- Thermal Shutdown and Overload Protection
- **Power Good Indicator**

1.3 **Applications**

- Wearable and Portable Electronic Devices
- DDR Memories, LPDDR3, LPDDR4, LPDDR5
- Tablets, Netbooks, Ultra-Mobile PCs
- Smart Speakers, Voice Assistant Devices
- TV Stick, OTT and Home Entertainment Devices
- Industrial HMI, desktop POS, KIOSK, digital signage

Ordering Information 1.4

Dreduct		Power-Up Defaults			Deckere Ture	
Product	MTK Item	VSEL0	VSEL1	EN Delay Time	Package Type	
MA5721AWSC	MA5721AP/A	0.9V	0.8V	0ms		
MA5721BWSC	MA5721BP/B	0.9V	1.05V	6ms	WL-CSP-11B 1.31x1.62 (BSC)	
MA5721CWSC	MA5721CP/A	0.6V	0.4V	6ms		
MA5721DWSC	MA5721DP/A	1.125V	1.125V	3ms		
MA5721EWSC	MA5721EP/A	0.8V	0.75V	3ms		
MA5721FP/A	MA5721FP/A	0.75V	0.75V	0ms		

Table 1-1. Ordering options

Marking Information 1.5

MA5721AP/A

84 : Product Code W : Date Code

MA5721BP/B

83W

83 : Product Code W : Date Code

MA5721CP/A

88 : Product Code

W : Date Code

86W

86 : Product Code W: Date Code

MA5721EP/A

MA5721DP/A

8Y : Product Code W : Date Code

MA5721FP/A

95 : Product Code W : Date Code

Datasheet

1.6 Pin Configuration

Figure 1-1. WL-CSP-11B 1.31x 1.62 (BSC)

Table 1-2. Functional Pin Description

Pin No.	Pin Name	Pin Function
A1, B1	VIN	Power input voltage. Connect to the input power source. Connect to C_{IN} with minimal path.
A2	SW	Switching node. Connect to the inductor.
A3	PGND	Power ground. The low-side MOSFET is referenced to this pin. $C_{\rm IN}$ and $C_{\rm OUT}$ should be returned with a minimal path to these pins.
B3	PG	Power good indicator. The output of this pin is an open-drain with external pull-up resistor. After soft startup, PG is pulled up when the FB voltage is within 87% (typ.). The PG status is low while EN is disabled. Note that when VIN is lower than 2.32V (typ.), the PG pin will keep low to indicate the power is not ready.
C1	VSEL	Voltage select. When this pin is low, VOUT is set by the VSEL0 register. When this pin is high, VOUT is set by the VSEL1 register. Polarity of this pin in conjunction with the mode bits in the Control register 02h will select Forced PWM or Auto PFM/PWM mode of operation.
C2	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode, and will reset all registers to the default value.
C3	VOUT	VOUT. Output voltage sense through this pin. Connect to output capacitor.
D1	AGND	Analog ground. All signals are referenced to this pin. Avoid routing high dV/dt AC currents through this pin.
D2	SCL	I ² C serial clock.
D3	SDA	I ² C serial data.

Datasheet

EN O **VID** Interface Configuration SCL O Registers and Control Logic SDA 0-VOUT-UVP - VIN Soft-Start UVLO AVINand Slew VOUT H₽ OTP Loop Rate Error Control Control Amplifier -0 SW TON Protection Comparator Driver Generator Logic VSELO DAC H∎ SW PGo-87% Ramp Generator Current Feedback VOUT -Limit Resistors SW Discharge Detector ≶ Resistor • PGND AGNDo-AZC SW Ŧ \mathbf{a}

Functional Descriptions

2

Figure 2-1. Functional Block Diagram

3 **Operation**

The MA5721 is a low voltage synchronous step-down converter that supports input voltage ranging from 2.5V to 5.5V and the output current can be up to 1A. The MA5721 uses ACOT[®] mode control. To achieve good stability with low-ESR ceramic capacitors, the ACOT[®] uses a virtual inductor current ramp generated inside the IC. This internal ramp signal replaces the ESR ramp normally provided by the output capacitor's ESR. The ramp signal and other internal compensations are optimized for low-ESR ceramic output capacitors.

In steady-state operation, the feedback voltage, with the virtual inductor current ramp added, is compared to the reference voltage. When the combined signal is less than the reference, the on-time one-shot is triggered, as long as the minimum off-time one-shot is cleared and the measured inductor current (through the synchronous rectifier) is below the current limit. The on-time one-shot turns on the high-side switch and the inductor current ramps up linearly. After the on-time, the high-side switch is turned off and the synchronous rectifier is turned on and the inductor current ramps down linearly. At the same time, the minimum off-time one-shot is triggered to prevent another immediate on-time during the noisy switching time and allows the feedback voltage and current sense signals to settle. The minimum off-time is kept short so that rapidly-repeated on-times can raise the inductor current quickly when needed.

3.1 PWM Frequency and Adaptive On-Time Control

The on-time can be roughly estimated by the equation :

 $T_{ON} = \frac{V_{OUT}}{V_{IN}} \times \frac{1}{f_{SW}}$ where f_{sw} is nominal 2.4MHz.

3.2 Auto-Zero Current Detector

The auto-zero current detector circuit senses the SW waveform to adjust the zero current threshold voltage. When the current of low-side MOSFET decrease to the zero current threshold, the low-side MOSFET turns off to prevent negative inductor current. In this way, the zero current threshold can be adjusted for different conditions to get better efficiency.

3.3 Under-Voltage Protection (UVLO)

The UVLO continuously monitors the voltage of VIN to make sure the device works properly. When the VCC is high enough to reach the high threshold voltage of UVLO, the step-down converter softly starts or pre-biases to its regulated output voltage. When the VIN decreases to its low threshold (160mV hysteresis), the device will shut down.

3.4 Power Good Indication Pin

The MA5721 features an open-drain power-good output (PG) to monitor the output voltage status. The output delay of comparator prevents false flag operation for short excursions in the output voltage, such as during line and load transients. Pull-up PG with a resistor to V_{OUT} or an external voltage below 5.5V. When V_{IN} voltage rises above V_{UVLO}, the power-good function is activated. After soft- start is finished, the PG pin is controlled by a comparator connected to the feedback signal

V_{OUT}. If V_{OUT} rises above a power-good high threshold (V_{TH_PGLH}) (typically 87% of the reference voltage), the PG pin will be in high impedance and V_{PG} will be held high. Moreover, when V_{IN} is above UVLO and device is powered on through EN pin, the PG pin will assert high within 300 μ s as soon as the V_{EN} is above logic-high threshold; in other words, the PG delay time is around 300 μ s from EN asserts to logic-high. When V_{OUT} falls below the power-good low threshold (V_{TH_PGHL}) (typically 77% of the reference voltage), the PG pin will be pulled low after a certain delay (3 μ s, typically). Once being started-up, if any internal protection is triggered, PG will be pulled low to GND. The internal open-drain pull down device (11 \wedge , typically) will pull the PG pin low. The power good indication profile is shown in Table 3-1. Note that when V_{IN} is lower than 2.32V (typically), the PG pin will keep low to indicate the power is not ready.

Figure 3-1. The Logic of PG

C	conditions	PG Pin
Enable	V _{EN} > V _{EN_H} , Vfb > Vth_pglh	High Impedance
	V _{EN} > V _{EN_H} , Vfb < Vth_pghl	Low
Shutdown	$V_{EN} < V_{EN_L}$	Low
OTP	$T_{\rm J} > T_{\rm SD}$	Low

Table 3-1. PG Pin Status

3.5 Over-Current Protection (OCP)

When the output voltage of the MA5721 is lower than 59% of the reference voltage after soft-start, the UVP is triggered. The MA5721 senses the current signal when high-side and low-side MOSFET turns on. As a result, the OCP is cycle-by-cycle limit. If the OCP occurs, the converter holds off the next pulse and turns on low-side switch until inductor drops below the valley current limit, and then turns on high-side again to maintain output voltage and supports loading current to output before triggering UVP.

If the OCP condition keeps and the load current is larger than the current which converter can provide, the output voltage will decrease and drop below UVP threshold, and the converter will keep switching for 16 consecutive cycles before entering hiccup operation. The converter latches off 1.7ms when the output voltage is still lower than UVP threshold, and the soft-start sequence begins again after latching off time.

3.6 Soft-Start

An internal current source charges an internal capacitor to build the soft-start ramp voltage. The typical soft-start time can be programming by I²C.

3.7 **Over-Temperature Protection (OTP)**

The MA5721 has over-temperature protection. When the device triggers the OTP, the device shuts down.

Over-Voltage Behavior (OV) 3.8

The MA5721 provides a natural over-voltage protection function to prevent damage behavior during heavy load released scenario.

When device is set at auto PFM/PWM operation, the high-side and low-side MOSFET will automatically turn off immediately as long as output voltage rises above internal reference target. When the output voltage goes below the target, the internal comparator will trigger on-time controller to resume switching behavior to maintain excellent regulation.

When device is configured as FCCM operation mode, the high-side and low-side MOSFET will continuously switch to regulate the output voltage back to target setting.

Electrical Characteristics 4

4.1 **Absolute Maximum Ratings**

Supply InputVoltage, VIN	0.3V to 7V
SW Pin Switch Voltage	–0.3V to 7.3V
<50ns	–5V to 8.5V
Other I/O Pin Voltages	
Junction Temperature	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	65°C to 150°C

Note:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

4.2 **ESD Ratings**

ESD Susceptibility	
HBM (HumanBody Model)	2kV

Note:

Devices are ESD sensitive. Handling precautions are recommended.

Recommended Operating Conditions 4.3

Supply InputVoltage, VIN	2.5V to 5.5V
Junction Temperature Range	

Note:

The device is not guaranteed to function outside its operating conditions.

4.4 Thermal Information

Table 4-1. Thermal Information

	Thermal Parameter	WL-CSP-11B 1.31x1.62 (BSC)	Unit
θј	Junction-to-ambient thermal resistance (JEDEC standard)	48.8	°C/W
θJC(Top)	Junction-to-case (top) thermal resistance	18	°C/W
$\theta_{JC(Bottom)}$	Junction-to-case (bottom) thermal resistance	4.44	°C/W
$\theta_{JA(EVB)}$	Junction-to-ambient thermal resistance (specific EVB)	65.4	°C/W
ΨJC(Top)	Junction-to-top characterization parameter	2.2	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	41.1	°C/W

Note 1:

For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061. **Note 2:**

 $\theta_{JA(EVB)}$, $\Psi_{JC(Top)}$ and Ψ_{JB} are measured on a high effective-thermal-conductivity four-layer test board which is in size of 70mm x 50mm, furthermore, all layers with 1 oz. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

4.5 Electrical Characteristics

Table 4-2. General electrical specification

 $(V_{IN} = 3.6V, T_A = 25^{\circ}C, unless otherwise specified)$

Paramet	ter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Quiescent Current PWM		IQ_PWM	I _{LOAD} = 0, mode Bit = 1 (Forced PWM)		15		mA
Operating Quiescent Current PFM		IQ_PFM	ILOAD = 0		45		μA
H/W Shutdown Supply Current		ISHDN_H/W	EN = GND		0.1	3	μA
S/W Shutdown Supply Current		ISHDN_S/W			2	12	μA
Under-Voltage Lockout Threshold		VUVLO	V _{IN} rising		2.32	2.45	V
Under-Voltage Loc Hysteresis	kout	ΔΫυνιο			350		mV
High-Side Switch- Resistance	Dn	RDS(ON)_H	V _{IN} = 5V		60		mΩ
Low-Side Switch-On Resistance		RDS(ON)_L	V _{IN} = 5V		34		mΩ
Enable Threshold	Logic-High	VIH	$2.5V \le V_{IN} \le 5.5V$	0.74	0.9	1.06	V
Voltage	Logic-Low	VIL	$2.5V \leq V_{IN} \leq 5.5V$	0.64	0.8	0.92	V

Enable Input Bias Current	I _{EN}	EN Pin tied to GND or VIN		0.01	1	μA
		$\begin{array}{l} 2.5V \leq V_{IN} \leq 5.5V, \ V_{OUT} \ from \\ minimum \ to \ maximum, \ I_{OUT(DC)} = 0A \\ to \ 1A, \ Auto \ PFM/PWM \qquad (Note \ 2) \end{array}$	-3		5	%
VOUT DC Accuracy		$\begin{array}{l} 2.5V \leq V_{IN} \leq 5.5V, \ V_{OUT} \ from \\ minimum \ to \ maximum, \\ I_{OUT(DC)} = 0A \ to \ 1A, \ Forced \ PWM \\ (Note \ 2) \end{array}$	-1.5		1.5	%
Load Regulation	ΔV_{LOAD}	$I_{OUT(DC)} = 0.5A \text{ to } 1A (Note 2)$		0.1		%/A
Line Regulation	ΔV_{LINE}	$\begin{array}{l} 2.5V \leq V_{IN} \leq 5.5V, \\ I_{OUT(DC)} = 1A (Note \ 2) \end{array}$		0.2		%/V
Transient Load Response	ACLOAD	I_{LOAD} step 0.01A to 1A, $t_{R} = t_{F} = 500$ ns, $V_{OUT} = 1.125V$ (Note 2)		±45		mV
Transient Load Response	ACLOAD	$ I_{LOAD} \mbox{ step } 0.01A \mbox{ to } 0.8A, \\ t_{R} = t_{F} = 1 \mu \mbox{s}, \mbox{ L} = 0.33 \mu \mbox{H}, \\ C_{OUT} = 22 \mu \mbox{F} \mbox{ x} \ 2 (Note \ 2) $		45		mV
Line Transient	VLINE	$V_{IN} = 3V$ to 3.6V, $t_R = t_F = 10\mu s$, $I_{OUT} = 100mA$, Forced PWM mode (Note 2)		±40		mV
High-Side MOSFET Peak Current Limit	ILIM_P			3.15		А
Low-Side MOSFET Valley Current Limit	ILIM_V			1.67		А
Thermal Shutdown	T _{SD}			150		°C

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Shutdown Hysteresis	ΔT_{SD}			15		°C
Switching Frequency	fsw	MA5721A : 0.9V MA5721B : 0.9V MA5721C : 0.6V MA5721D : 1.125V MA5721E : 0.8V MA5721F : 0.75V	2100	2400	2700	kHz
Minimum Off-Time	toff_min			170		ns
DAC Resolution		(Note1)		8		bits
DAC Differential Nonlinearity		(Note1)			0.5	LSB
Power Good						
Power Good Threshold	Vth_pglh	VOUT rising, PGOOD from low to high		87		% of
	VTH_PGHL	VOUT falling, PGOOD from high to low		77		V_{REF}
Power Good Falling Delay Time				3		μs

(1) Note 1 for θ_{JA(EVB)}, Ψ_{JC(Top)} and Ψ_{JB} are measured on a high effective-thermal-conductivity four-layer test board which is in size of 70mm x 50mm, furthermore, all layers with 1 oz. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

(2) Note 2 for guaranteed by design

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
	High Level		1.2			V
SDA, SCL Input Voltage	Low Level				0.4	V
		Fast mode			400	kHz
SCL Clock Rate	fscl	Fast mode plus			1	MHz
SOL OIGER Hate	ISUL	High speed mode, load 100pF max			3.4	MHz
Hold Time (Repeated)		Fast mode	0.6			μs
Start Condition. After this Period, the First Clock	t _{HD;STA}	Fast mode plus	0.26			μs
Pulse is Generated		High speed mode	0.16			μs
		Fast mode	1.3			μs
Low Period of the SCL Clock	tLOW	Fast mode plus	0.5			μs
		High speed mode	0.16			μs
		Fast mode	0.6			μs
High Period of the SCL Clock	tніgн	Fast mode plus	0.26			μs
CIUCK		High speed mode	0.06			μs
Set-Up Time for a Repeated START		Fast mode	0.6			μs
	tsu;sta	Fast mode plus	0.26			μs
Condition		High speed mode	0.01			μs
	thd;dat	Fast mode	0			μs
Data Hold Time		Fast mode plus	0			μs
		High speed mode	0			μs
		Fast mode	100			ns
Data Set-Up Time	tsu;dat	Fast mode plus	50			ns
		High speed mode	10			ns
		Fast mode	0.6			μs
Set-Up Time for STOP Condition	tsu;sto	Fast mode plus	0.26			μs
		High speed mode	0.16			μs
Bus Free Time between a STOP and START	tBUF	Fast mode	1.3			μs
Condition		Fast mode plus	0.5			μs
		Fast mode	20		300	ns
		Fast mode plus			120	ns
Rising Time of both SDA and SCL Signals	t _R	High speed mode (SDA) load 100pF max	10		80	ns
		High speed mode (SCL) load 100pF max	10		40	ns

Table 4-3. I ² C Interface (The I	² C interface will not work until the RESET# goes high)

Note:

Guaranteed by design.

5 Typical Operating Characteristics

5.1 Typical Operating Characteristics

Unless otherwise specified, Auto PFM/PWM mode, $T_A = 25^{\circ}$ C; circuit and components according to typical application circuit and Table 6-10.

Datasheet

Time (50µs/Div)

Time (50µs/Div)

MA5721

Datasheet

Time (1ms/Div)

6 Application Information

The basic MA5721 application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and operating frequency followed by C_{IN} and C_{OUT} .

6.1 Inductor Selection

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current, $\otimes I_L$, increases with higher V_{IN} and decreases with higher inductance, as shown in the equation below :

$$\Delta I_{L} = \left| \left| \frac{V_{OUT}}{f \times L} \right| \right| \times \left| \left| 1 - \frac{V_{OUT}}{V_{IN}} \right| \right|$$

where f is the operating frequency and L is the inductance. To optimize the loop stability, 0.33μ H is strongly recommended. Suppose the higher inductance is chosen, the transient performance may become worse; in the opposite situation, the lower inductance causes larger ripple, and there is a risk of reaching negative over-current protection during VID down.

6.2 Input and Output Capacitor Selection

An input capacitor, C_{IN}, is needed to filter out the trapezoidal current at the source of the high-side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The RMS current is given by :

$$I_{RMS} = I_{OUT(MAX)} \times \frac{V_{OUT}}{V_{IN}} \times \sqrt{\frac{V_{IN}}{V_{OUT}}} 1$$

This formula has a maximum at $V_{IN} = 2V_{OUT}$, where $I_{RMS} = I_{OUT(MAX)} / 2$.

This simple worst-case condition is commonly used for design.

Choose a capacitor rated at a higher temperature than required.

Several capacitors may also be paralleled to meet the size or height requirements of the design. Ceramic capacitors have high ripple current, high voltage rating and low ESR, which makes them ideal for switching regulator applications. However, they can also have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can lead to significant ringing. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, V_{IN}. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at V_{IN} large enough to damage the part. Thus, care must be taken to select a suitable input capacitor.

The selection of C_{OUT} is determined by the required ESR to minimize output voltage ripple. Moreover, the amount of bulk capacitance is also a key for C_{OUT} selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response.

The output voltage ripple, $\otimes V_{\text{OUT}},$ is determined by :

$$\Delta V \text{OUT} \leq \Delta I L \left[\text{ESR} + \frac{1}{8 \times f_{SW} \times C_{OUT}} \right]$$

where f_{SW} is the switching frequency and $\otimes I_L$ is the inductor ripple current. The output voltage ripple will be the highest at the maximum input voltage since $\otimes I_L$ increases with input voltage. Multiple capacitors placed in parallel may be needed to

meet the ESR and RMS current handling requirement.

Ceramic capacitors have excellent low ESR characteristics, but can have a high voltage coefficient and audible piezoelectric effects. The high Q of ceramic capacitors with trace inductance can also lead to significant ringing.

Nevertheless, high value, low-cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications.

6.3 I²C Interface Function

The MA5721 can be managed by $I^{2}C$ interface to select V_{OUT} voltage level, Dynamic Voltage Scaling (DVS) slew rate, Auto PFM/PSM or Forced PWM mode, and so on.

The register of each function can be found from the following register map, which also explains how to use these functions.

The MA5721 all series IC are able to support fast mode I²C interface (bit rate 400kb/s). For example, the MA5721A default

 I^2C slave address is 7'b1010000. The write or read bit stream (N \geq 1) is shown below : Read N bytes from MA5721

Figure 6-1. I²C Read and Write Stream and Timing Diagram

The MA5721 also supports High-speed mode (bit rate up to 3.4Mb/s) with access code 08H. Figure 6-2 and Figure 6-3 show detailed transfer format. Hs-mode can only commence after the following conditions (all of which are in F/S-mode) :

- START condition (S)
- 8-bit master code (00001xxx)
- not-acknowledge bit(Ā)

MA5721

Datasheet

Figure 6-3. A Complete Hs-mode Transfer

- The MA5721A I²C slave address is 7'b1010100 for 0.9V/0.8V setting.
- The MA5721B I²C slave address is 7'b1010101 for 0.9V/1.05V setting.
- The MA5721C I²C slave address is 7'b1010110 for 0.6V/0.4V setting.
- The MA5721D I²C slave address is 7'b1010111 for 1.125V/1.125V setting.
- The MA5721E I²C slave address is 7'1010100 for 0.8V/0.75V setting.
- The MA5721F I²C slave address is 7'b1010101 for 0.75V/0.75V setting.

Register Name	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Туре
NSEL0	0x00				VSEL	0				RW
NSEL1	0x01				VSEL	1				RW
CONTROL1	0x02	DISCHG		UP_SR[2:0)]	Reser ved	SW_ RESET	MODE_ VSEL1	MODE_ VSEL0	R/W
ID1	0x03	V	ENDOR_	ID	Reserved	DIE_ID				R
ID2	0x04		Re	served		DIE_REV				R
MONITOR	0x05	PGOOD	UVLO	Reserved	POS	NEG	RESET_ STAT	ОТ	BUCK_ STATUS	R
CONTROL2	0x06	[DN_SR[2:0]			SS_SR[1:0] EN_ VSEL1		_	EN_VSE L0	R/W
CONTROL4	0x08	Rese	rved		DIS_DLY[5:0]					R/W

Table 6-1. I²C Register Map

Table 6-2. NSELO

Address: 0x00)													
Bit	7	6	5	4	3	2	1	0						
Field		VSELO												
MA5721A	0	1	1	1	1	0	0	0						
MA5721B	0	1	1	1	1	0	0	0						
MA5721C	0	0	1	1	1	1	0	0						
MA5721E	0	1	1	0	0	1	0	0						
MA5721D	1	0	1	0	0	1	0	1						
MA5721F	0	1	0	1	1	0	1	0						
Туре				F	RW	RW								

Bit	Name	Description
7:0	VSEL0	VID Table satisfy: SEL[7:0] = 11001000: V _{OUT} = 1.3V SEL[7:0] = 00000000: 0.3V 5mV step for 0.3V to 1.3V

Datasheet

Table 6-3. NSEL1

Address: 0x01											
Bit	7	6	5	4	3	2	1	0			
Field		VSEL1									
MA5721A	0	1	1	0	0	1	0	0			
MA5721B	1	0	0	1	0	1	1	0			
MA5721C	0	0	0	1	0	1	0	0			
MA5721E	0	1	0	1	1	0	1	0			
MA5721D	1	0	1	0	0	1	0	1			
MA5721F	0	1	0	1	1	0	1	0			
MA5721A	0	1	1	0	0	1	0	0			
Туре		•		•	RW	•	•				
Bit		Nam	ne			Descript	ion				
7:0		VSE	L1	SEL SEL	VID Table satisfy: SEL[7:0] = 1100100 0: V _{OUT} = 1.3V						

Table	6-4.	DISCHG
-------	------	--------

Address: 0x	02									
Bit	7	6	5	4 3 2 1						
Field	DISCHG		UP_SR		Reserved	SW_RESET	MODE_VS EL1	MODE_VS EL0		
MA5721F	1	0	0	1	0	0	1	0		
Others	1	0	0	1	0	0	0	0		
Туре	RW		RW		RV	RW	RW	RW		
Bit Name					Description					
7	7	DISC	CHG	0: Discharge path disabled 1: Discharge path enabled						
6:4		UP_	SR	DVS Speed for UP DVS $000 = 24mV/\mu s$ $001 = 12mV/\mu s$ $010 = 6mV/\mu s$ $011 = 3mV/\mu s$ $100 = 1.5mV/\mu s$ $101 = 0.75mV/\mu s$ $110 = 0.375mV/\mu s$ $111 = 0.1875mV/\mu s$						
(3	Rese	erved	Reserved bits						
2	2	SW_R	ESET	Write 1 to reset, always read 0						
1 MODE_VSEL1			Mode control (activate when the VSEL pin set to logic-high): 1: Forced PWM mode 0: Auto PFM/PWM mode							
(0	MODE_	MODE_VSEL0 Mode control (activate when the VSEL pin set to logic 0: Auto PFM/PWM mode				gic-low):			

Table 6-5. ID1

Address: 0x	(03								
Bit	7	6	5	4	4 3 2 1				
Field	VENDOR_ID			Reserved	Reserved DIE_ID				
Default	0	0	0	0	0	0	0	0	
Type	RO			RV	RO				
Bit		Name		Description					
7:5		VENDOR_ID		Vendor_ID					
4	Reserved			Reserved bits					
3:0		DIE_ID		DIE_ID					

Table 6-6. ID2

Address: 0x04									
Bit	7	6	5	4	3	2	1	0	
Field		Rese	erved		DIE_REV				
Default	0	0	0	0	0 0 0 0				
Туре	RV RO								
Bit	Name Description								
7:4		Reserved	Reserved Reserved bits						
3:0		DIE_REV		Revision_ID					

Table 6-7. MONITOR

Address: 0x05									
Bit	7	6	5	4	3	2	1	0	
Field	PGOOD	UVLO	Reserved	POS	NEG	RESET_S TAT	OT	BUCK_ST ATUS	
Default	0	0	0	0	0	0	0	0	
Type	RO	RO	RV	RO	RO	RO	RO	RO	
Bit	Name Description								
7		PGOOD		1: Buck is enabled and soft-start is completed.					
6		UVLO		1: Signifies the VIN is less than the UVLO threshold.					
5		Reserved		Reserved bits					
4	POS 1: Signifies a positive voltage transition is in progress					ess			
3	NEG 1: Signifies a negative voltage transition is in progress					ess			
2	F	RESET_STA	Т	1: Indicates that a register reset was performed.					
1		OT		1: Signifies the thermal shutdown is active.					
0	BUCK_STATUS 1: Buck enabled; 0: buck disabled.								

Table 6-8. CONTROL2

Address: 0x	06								
Bit	7	6	5	4	3	2	1	0	
Field	DN_SR			Reserved	SS_	_SR	EN_VSEL1	EN_VSEL0	
Default	0	1	1	0	0	0	1	1	
Type		RW		RV	R	W	RW	RW	
Bit		Name				Descriptio	on		
7:5	$DVS Speed for DN DVS 000 = 24 mV/\mu s 001 = 12 mV/\mu s 010 = 6 mV/\mu s 011 = 3 mV/\mu s 100 = 1.5 mV/\mu s 101 = 0.75 mV/\mu s 110 = 0.375 mV/\mu s 111 = 0.1875 mV/\mu s $								
4		Reserved		Reserved bi	ts				
3:2		SS_SR		DVS Speed 00 = 10mV/µ 01 = 5mV/µs 10 = 2.5mV/ 11 = 1.25mV	us s µs	t DVS			
1	EN_VSEL1			Software power-on/off control register (activate when the VSEL pin set to logic-high): 0: Disable output 1: Enable output					
0	EN_VSEL0			Software power-on/off control register (activate when the VSEL pin set to logic-low): 0: Disable output 1: Enable output					

Table 6-9. CONTROL4

Address: 0>	(08									
Bit	7	6	5 4 3 2 1 0							
Field	Rese	erved	DIS_DLY							
Default	0	0	0	0 0 0 0 0 0						
Туре	R	V	RW							
Bit	Name Description									
7:6		Reserved	Reserved bits							
5:0		DIS_DLY	DIS_DLY Delay applied upon disable (ms) 000000b = 0ms - 111111b = 63ms(steps of 1ms)							

6.4 **V**_{OUT} Selection

The MA5721 has programmable VOUT from 0.3V to 1300mV with 5mV resolution.

The output voltage can be set by NSELx register bit and the output voltage is given by the following equation :

 $V_{OUT} = 0.3V + NSELx \times 5mV$

For example :

if NSELx = 0111100 (60 decimal), then $V_{OUT} = 0.3 + 60 \times 5mV = 0.3 + 0.3 = 0.6V$.

The MA5721 also has external VSEL pin to select NSEL1(0X01) or NSEL0(0X00). Pulling VSEL to high is for VSEL1 and pulling VSEL to low is for VSELO.

Upon POR, VSEL0 and VSEL1 are reset to their default voltages.

6.5 **Enable and Soft-Start**

When the EN pin is LOW, the IC is shut down, all internal circuits are off, and the part draws very little current. In this state, I²C cannot be written to or read until enable voltage is above the enable rising threshold. The registers are reset when the EN pin is LOW or during a Power On Reset (POR).

Once the EN pin is high, Vout will ramp up at the chosen soft-start slew rate programmed in the CONTROL2 register SS SR bit.

6.6 **Discharge Function**

In the CONTROL1 register, setting the DISCHG bit to 1 can make V_{OUT} discharge by internal resistor when the converter shuts down. If the DISCHG bit is set to 0, VOUT will decrease depending on the loading. When EN pin is set to low, the MA5721 turns on 10[^] discharge resistor by default.

6.7 **Slew Rate Setting**

The MA5721 can control slew rate as V_{OUT} changes between two voltage levels for both up and down. The UP_SR bits in the CONTROL1 register control up- speed, whereas the DN_SR bits in the CONTROL2 register control down-speed. The default DVS up slew rate is 12mV/µs and DVS down slew rate is 3mV/µs.

6.8 **Forced PWM Mode**

The MODE VSEL0 and MODE VSEL1 bits in CONTROL1 register can determine the operation mode of the converter. Set 1 for Forced PWM operation and set 0 for auto PSM/ PWM operation. Note that, MODE_VSEL0 is activated only when pulling VSEL pin to low, and only set VSEL pin to high for VSEL1 so that the setting of MODE_VSEL1 can be activated. During dynamic voltage scaling from high setting of output voltage to low setting, the MA5721 makes transient in Forced PWM mode, and output voltage will decrease quickly.

6.9 Typical Application Circuit

Figure 6-4. Typical application circuit

Table 6-10. Recommended External Components for 1A Maximum Load Current

Component Description		Vendor P/N			
11		DFE201610E-R33M=P2 (Murata)			
	330nH, 2016 case size	HMMQ20161T-33MDR (Cyntec)			
C2	4.7μF, 10V, X5R, 0402	ZRB15XR61A475ME01D (Murata)			
C3 ⁽¹⁾	100nF, 6.3V, X5R, 0201	GRM033R60J104KE19D (Murata)			
C4		GRM188R60J226MEA0D (Murata)			
	22μF, 6.3V, X5R, 0603	C1608X5R0J226M080AC (TDK)			

(1) Note 1 for the decoupling capacitor C3 is recommended to reduce any high frequency component on VIN bus. All the input and output capacitors are the suggested values, referring to the effective capacitances, subject to any de-rating effect, like a DC bias.

6.10 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WL-CSP-11B 1.31x1.62 (BSC) package, the thermal resistance, θ_{JA} , is 68.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board.

The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated as below : $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (68.5^{\circ}C/W) = 1.46W$ for a WL-CSP-11B 1.31x1.62 (BSC) package. The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 6-5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 6-5. Derating Curve of Maximum Power Dissipation

6.11 Layout Considerations

For best performance of the MA5721, the following layout guidelines must be strictly followed.

- Input capacitor must be placed as close as possible to IC to minimize the power loop area. A typical 0.1μF decoupling capacitor is recommended to reduce power loop area and any high frequency component on V_{IN}.
- SW node is with high frequency voltage swing, so the SW node area should be kept small.
- Keep every power trace connected to pin as wide as possible for improving thermal dissipation.
- The AGND pin is suggested to connect to 2nd GND plate through top to 2nd via.

Figure 6-6. PCB Layout Guide

7 MA5721 Packaging

Outline Dimension 7.1

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Мах	Min.	Мах	
А	0.500 0.600		0.020	0.024	
A1	0.170	0.230	0.007	0.009	
b	0.240	0.300	0.009	0.012	
D	1.580	1.660	0.062	0.065	
D1	1.2	200	0.047		
E	1.270	1.350	0.050	0.053	
E1	0.8	800	0.031		
е	0.4	.00	0.016		

Figure 7-1. 11B WL-CSP 1.31x1.62 Package (BSC)

Datasheet

Footprint Information 7.2

Package	Number of Pin	Туре	Footprint Dimension (mm)			Tolerance
T ackage			е	А	В	TOIETAILCE
WL-CSP1.31x1.62-11(BSC)	11	NSMD	0.400	0.240	0.340	±0.025
WE-03F1.31X1.02-11(B30)	11	SMD	0.400	0.270	0.240	10.025

Figure 7-2. Footprint information

Exhibit 1 Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this "Document") is subject to your (including the corporation or other legal entity you represent, collectively "You") acceptance of the terms and conditions set forth below ("T&C"). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If You don't agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively "MediaTek") or its licensors and is provided solely for Your internal use with MediaTek's chipset(s) described in this Document and shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any potential patent infringement claim against MediaTek or any of MediaTek's suppliers and/or direct or indirect customers). Unauthorized use or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further notification. MediaTek does not assume any responsibility arising out of or in connection with any use of, or reliance on, this Document, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS DOCUMENT, IF ANY, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MediaTek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does MediaTek assume any liability arising out of the application or use of any product, circuit or software. You agree that You are solely responsible for the designing, validating and testing Your product incorporating MediaTek's product and ensure such product meets applicable standards and any safety, security or other requirements.

The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance with the laws of Taiwan, without giving effect to the principles of conflicts of law.